## Studies of Transformation and Particle-Binding of Resin Acids During Oxidative Treatment of Effluent from Two New Zealand Pulp Mills

S. A. Kanber · A. G. Langdon · A. L. Wilkins

Received: 17 October 2007/Accepted: 10 December 2007/Published online: 22 January 2008 © Springer Science+Business Media, LLC 2008

**Abstract** Reactor studies of aerobic degradation of effluent from the first and last ponds of the treatment system of two New Zealand pulp and paper mills indicated that filterable BOD<sub>5</sub>, resin acids and transformed resin acids, free and bound, degraded at similar rates. During oxidative treatment the resin acids of untreated effluent became increasingly bound to particulate material and a sediment high in abiet-13-enoic acid was formed.

**Keywords** Resin acid transformation · Particle-binding · Abiet-13-enoic acid · Pulp and paper effluent

In previous studies we have found that more than 90% of the resin acid content of primary clarifier effluent water generated by a kraft pulp and paper mill was either soluble or passed through a 0.05  $\,\mu m$  membrane filter (Kanber et al. 2006). On the other hand, >70% of the extractable resin acids discharged from the biological treatment system and found in the Tarawera River, were bound to 0.05-15 micron particles (Ali-Kanber et al. 2000). While it can be anticipated that resin acids will bind with microbial biomass formed during oxidative treatment (Hall and Liver 1996), we wished to confirm this in controlled laboratory studies. In addition the role played by the particulate material remaining in the clarified primary effluent is not known. During treatment, conversion of abietic acid to abietan-13-enoic acid and abietan-18-oic acid occurs. A major component of the resin acid that survives aerobic treatment is particle bound abietan-18-oic acid (Kanber et al. 2006) consistent with earlier detection of saturated resin acids and resin hydrocarbons in the Tarawera River (Wilkins and Panadam 1987).

In the present studies we monitored the aerobic degradation of filtered and unfiltered effluent from the first pond of the four pond treatment system and unfiltered effluent from the final discharge to determine the relative degradation rates of the various resin acids present, the effect of particle binding on degradation and the relative degradation rates of resin acids and BOD<sub>5</sub> present in dissolved and particulate forms.

## Materials and Methods

Water samples in screw capped 2.5 L glass winchesters or 20 L plastic containers were collected from the outflow of treatment ponds 1 and 4 of the combined treatment system for two pulp mills located on the banks of the Tarawera River, North Island, New Zealand (Ali-Kanber et al. 2006).

Bench reactor studies were performed in a 20 L vessel thermostated at 25°C containing 10 L of sample through which air was gently purged to maintain close to saturated aerobic conditions while providing gentle agitation. BOD<sub>5</sub> and resin acids were monitored over the 17–31 day duration of the experiments. The principal series of experiments involved sampling pond 1 and pond 4 (on different dates) and performing reactor runs with unfiltered (UF) or glass fibre filtered (GFF) samples. Reactor runs were typically initiated within 8 h of sampling. Prior to the withdrawal of analytical samples, the reactor vessels were removed from the water bath, thoroughly shaken and allowed to stand for 10 min at room temperature. The analytical sample (100 mL collected after discarding the first 20 mL) was withdrawn from a tap located 35 mm from the bottom of

S. A. Kanber · A. G. Langdon (⋈) · A. L. Wilkins Chemistry Department, The University of Waikato, Private Bag 3105, Hamilton, New Zealand e-mail: a.langdon@waikato.ac.nz



Table 1 Resin acid levels (μg/L) and BOD5 (mg/L) determined for UF Pond 1 water collected 27/1/2000, and subsequently aerated at 25°C for 31 days

|             | Seco | Pim  | 18-Ab | DHAA | 13-ene | Ab | Cls | Total | $BOD_5$ |
|-------------|------|------|-------|------|--------|----|-----|-------|---------|
| L/L UF      |      |      |       |      |        |    |     |       |         |
| Day 0       | 606  | 1819 | 98    | 4591 | 1409   | 21 | 132 | 8676  | 96.3    |
| Day 1       | 581  | 1765 | 16    | 4986 | 602    | _  | 159 | 8109  | 86.3    |
| Day 2       | 470  | 1523 | 51    | 4436 | 828    | _  | 121 | 7428  | 78.5    |
| Day 3       | 494  | 1544 | 16    | 4294 | 864    | _  | 112 | 7323  | 71.4    |
| Day 4       | 390  | 619  | 7.7   | 2324 | 648    | _  | 89  | 4077  | 60.0    |
| Day 7       | 345  | 95   | 5.1   | 220  | 121    | -  | 17  | 803   | 30.0    |
| Day 10      | 227  | 96   | _     | 93   | 14     | -  | 6.8 | 436   | 22.5    |
| Day 16      | 23   | 55   | _     | 41   | 77     | _  | 4.6 | 200   | 19.0    |
| Day 21      | 11   | 24   | 4.6   | 32   | 38     | _  | 1.5 | 112   | 16.8    |
| Day 31      | 15   | 16   | 34    | 19   | 9      | -  | 2.0 | 96    |         |
| L/L 0.45 μι | m    |      |       |      |        |    |     |       |         |
| Day 0       | 471  | 1588 | 55    | 4662 | 876    | -  | 119 | 7770  |         |
| Day 1       | 456  | 1479 | 12    | 4363 | 874    | -  | 108 | 7292  |         |
| Day 2       | 404  | 1194 | 11    | 3900 | 542    | -  | 73  | 6125  |         |
| Day 3       | 368  | 1105 | 12    | 3033 | 520    | -  | 68  | 5105  |         |
| Day 4       | 383  | 1072 | 36    | 2187 | 466    | -  | 73  | 4216  |         |
| Day 7       | 314  | 805  | _     | 183  | 71     | -  | 10  | 1383  |         |
| Day 10      | 136  | 28   | _     | 39   | 18     | -  | 2.0 | 223   |         |
| Day 16      | 5.9  | 8.9  | _     | 18   | 10     | -  | 0.8 | 44    |         |
| Day 21      | 6.2  | 7.3  | _     | 19   | 8.1    | -  | _   | 41    |         |
| Day 31      | 15   | 5.5  | _     | 16   | _      | -  | 1.0 | 37    |         |
| Sox 0.45 μ  | m    |      |       |      |        |    |     |       |         |
| Day 0       | 77   | 320  | 2.2   | 450  | 246    | -  | 43  | 1139  |         |
| Day 1       | 71   | 298  | 2.4   | 424  | 244    | -  | 42  | 1081  |         |
| Day 2       | 54   | 234  | 2.1   | 345  | 166    | -  | 33  | 835   |         |
| Day 3       | 53   | 244  | 2.6   | 345  | 173    | -  | 33  | 851   |         |
| Day 4       | 31   | 139  | 0.9   | 157  | 86     | -  | 18  | 432   |         |
| Day 7       | 33   | 105  | 0.9   | 44   | 29     | -  | 3.5 | 215   |         |
| Day 10      | 31   | 78   | -     | 56   | 27     | -  | 4.0 | 196   |         |
| Day 16      | 19   | 29   | -     | 17   | 26     | _  | 0.4 | 92    |         |
| Day 21      | 11   | 21   | -     | 12   | 18     | -  | 1.5 | 64    |         |
| Day 31      | 7    | 15   | _     | 11   | 13     | -  | 0.5 | 47    |         |

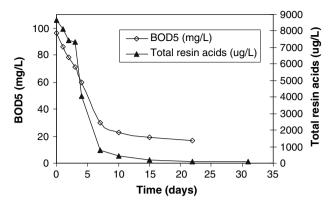
Abbreviations: L/L = liquid/liquid, UF = unfiltered, Sox = Soxhlet, Seco = secodehydroabietic acids-1 and 2, Pim = pimaric acid, 18-Ab = abietan-18-oic acid, DHAA = dehydroabietic acid, 13-ene = abiet-13-enoic acid, Ab = abietic acid, Cls = 12-chloro, 14-chloro and 12,14-dichlorodehydroabietic acids, total = total resin acids

the vessel. Samples were taken at regular intervals from the start of the reactor runs. For the UF experiment three subsamples were withdrawn. One was extracted without filtration. The second was 0.45 µm filtered and the filtrate and filter paper liquid/liquid extracted, and Soxhlet extracted, respectively to determine resin acid levels using the GC/MS protocols reported previously (Ali Kanber et al. 2000). The third was used for BOD<sub>5</sub> measurement (APHA 1985). At the end of the trial, the remaining 400 mL of solution containing sediment precipitated

during the trial was analysed in a similar manner. For the GFF experiment, sub-samples were taken after various incubation times and used for resin acid and BOD<sub>5</sub> determination without further filtration.

Pond 4 experiments were performed with only an UF effluent. At each sampling time, five 100 mL sub-samples were taken. The first was liquid/liquid extracted for resin acid determination. The second was used for BOD $_5$  measurement. The third was filtered through 0.45  $\mu$ m filter paper, prior to liquid/liquid or Soxhlet extraction of the




filtrates and filter papers respectively for resin acid determination. The fourth and fifth were combined and the  $0.45~\mu m$  filtrate used for  $BOD_5$  determination.

## **Results and Discussion**

Resin acid and BOD data for the UF and GFF experiments for Pond 1 effluent are summarised in Tables 1 and 2. As is clear from Figs. 1 and 2, a generally similar decrease of BOD<sub>5</sub> and resin acids occurred. However in the UF system the rate of resin acid degradation appeared to increase after 4 days whereas in the GFF system the onset of increased degradation rate appeared to be delayed until day 7 and even longer for the minor secodehydroabietic acid components. Filtration may have removed active microbial biomass needed for degradation.

It is clear from the difference in the BOD<sub>5</sub> values of Tables 1 and 2 that glass fibre filtration before the commencement of the reactor experiments reduced the BOD<sub>5</sub>. Furthermore, the BOD<sub>5</sub> difference decreased at a slower rate than the BOD<sub>5</sub> of the filtered system, indicating a slower rate of degradation of the particulate matter removed by filtration. Visible sediment was formed in the UF system from about day 5 while very little sediment formed in the GFF system. Data for the 400 mL slurry remaining at the end of the UF experiment are summarised in Table 3. The high levels of resin acid, the majority of which is abiet-13-enoic acid, are almost all associated with particulate material. Weight loss on ignition revealed that the particulate material was predominantly organic. SEM examination showed aggregates clumped around fibrous material.

Figure 3 shows that the percentage of particle-bound resin acids in UF Pond 1 water increases as the total resin



 ${\bf Fig.~1~BOD_5}$  and total resin acid levels determined for UF Pond 1 water collected 27/1/2000

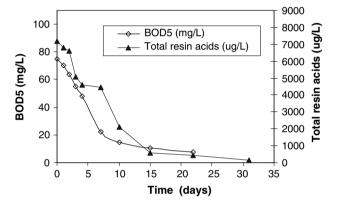



Fig. 2 BOD<sub>5</sub> and total resin acid levels determined for a GFF Pond 1 water sample, collected 27/1/2000

acid decreases during aerobic degradation. The effect became pronounced after day 4 when the majority of the resin acids had been degraded. In the case of the Pond 4 samples, much of the BOD<sub>5</sub> and resin acid was particulate

Table 2 Resin acid levels (μg/L) and BOD<sub>5</sub> (mg/L) determined for liquid/liquid extracted GFF Pond 1 water collected 27/1/2000 and subsequently aerated and incubated at 25°C for 31 days

| '      | Seco | Pim          | 18-Ab | DHAA | 13-ene | Cls | Total | %   | BOD <sub>5</sub> |
|--------|------|--------------|-------|------|--------|-----|-------|-----|------------------|
| Day 0  | 441  | 1399         | _     | 4379 | 854    | 93  | 7166  | 100 | 75               |
| Day 1  | 389  | 1324         | 12    | 4369 | 613    | 91  | 6798  | 95  | 70.1             |
| Day 2  | 402  | 1282         | 15    | 4289 | 516    | 86  | 6589  | 92  | 63.7             |
| Day 3  | 368  | 1292         | 7.3   | 2791 | 531    | 77  | 5066  | 71  | 55.2             |
| Day 4  | 326  | 898          | 10    | 3194 | 93     | 71  | 4592  | 64  | 48               |
| Day 7  | 342  | 777          | 8.2   | 3178 | 45     | 91  | 4442  | 62  | 22.5             |
| Day 10 | 449  | $(1314)^{a}$ | 4.3   | 192  | 67     | 63  | 2090  | 29  | 14.7             |
| Day 16 | 416  | 58           | 4.7   | 47   | 20     | 30  | 575   | 8   | 10.6             |
| Day 21 | 380  | 22           | _     | 28   | 18     |     | 447   | 6   | 7.7              |
| Day 31 | 51   | 18           | _     | 39   | 18     | 2.8 | 129   | 2   |                  |

<sup>&</sup>lt;sup>a</sup> Result may be anomalous. Abbreviations: GFF = glass fibre filtered, Seco = secodehydroabietic acids -1 and 2, Pim = pimaric acid, 18-Ab = abietan-18-oic acid, DHAA = dehydroabietic acid, 13-ene = abiet-13-enoic acid, Cls = 12-chloro, 14-chloro and 12,14-dichlorodehydroabietic acids, total = total resin acids, % = % remaining relative to GFF water, measured on day 0



Table 3 Resin acid and levels  $(\mu g/L)$  and  $BOD_5$  (mg/L) identified in the slurry remaining from the UF Pond 1 incubation experiment

| Sample               | Seco | Pim | 18-Ab | DHAA | 13-ene | Cls | Total | BOD <sub>5</sub> |
|----------------------|------|-----|-------|------|--------|-----|-------|------------------|
| L/L UF slurry        | 234  | 833 | 5.9   | 634  | 1399   | 66  | 3173  | 38.5             |
| L/L 0.45 µm filtrate | 3.4  | 11  | _     | 15   | 20     | _   | 49.4  | 6.0              |
| Sox 0.45 µm residue  | 280  | 819 | 11    | 560  | 1583   | 72  | 3325  |                  |

Abbreviations: L/L = liquid/liquid, UF = unfiltered, Sox = Soxhlet, Seco = secodehydroabietic acids -1 and 2, Pim = pimaric acid, 18-Ab = abietan-18-oic acid, DHAA = dehydroabietic acid, 13-ene = abiet-13-enoic acid, Cls = 12-chloro, 14-chloro and 12,14-dichlorodehydroabietic acids

at the time of sampling. Data for the distribution of BOD<sub>5</sub> and resin acids over various particulate size fractions are given in Tables 4 and 5.

The degradation of the bound and unbound components in the Pond 4 samples was monitored by reactor studies using unfiltered Pond 4 water, withdrawing duplicate samples and filtering one of these through 0.45 µm before analysis. The decrease of the bound and unbound resin acid and BOD<sub>5</sub> is summarised in Table 6. All the resin acids decomposed with similar kinetics. The degradation rates of free and bound components of the DHAA group, pimaric acid and abietan-18-oic acid were also very similar. Although abietan-18-oic acid is the principal survivor of the mills' treatment process, under the conditions of the experiment it degraded at the same rate as the other resin acids. Causes other than enhanced stability (under aerobic conditions) need to be found to explain the high levels of abietan-18-oic acid in the final discharge of the treatment system. It is of note that abietan-18-oic acid, abiet-13-enoic acid and dehydroabietic acid are the dominant resin acids in biologically treated effluents discharged by the mills to the Tarawera River. These resin acids are also the dominant constituents of biologically treated effluents discharged by another New Zealand pulp mill (Zender et al. 1994). On the other hand dehydroabietic acid and abietic acid, typically have been the dominant resin acids reported in treated or untreated effluents discharged by

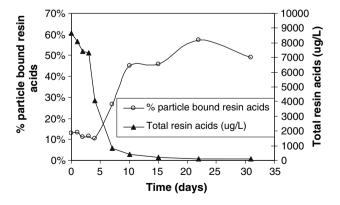



Fig. 3 Comparison of total resin acid degradation curves for UF Pond 1 water and percentage particle bound resin acids

overseas pulp mills (McLeay 1987; Kostamo et al. 2004). The pathway that initially affords abiet-13-enoic acid and subsequently abietan-18-oic acid appears to be one primarily associated with the biological treatment regimes of New Zealand pulp mills, although intriguingly abietan-18-oic acid can be viewed as the immediate precursor of fichtelite (the decarboxylated analogue of abietan-18-oic acid). Fichtelite has been reported world-wide in historic sediments known to have natural inputs from woody plants (Otto and Simoneit 2001) and has been detected in Northern Hemisphere sediments affected by pulp and paper discharges (Leppanen et al. 2000).

Our results show that particulate matter provides a long lived BOD component in the Pond 1 water. Individual resin acids, including abietan-18-oic acid, and BOD<sub>5</sub> in 0.45 µm filtered samples, all undergo aerobic degradation with similar kinetics. Abietan-18-oic acid levels do not increase under these conditions but the percentage of particle bound resin acid, the majority of which is abiet-13-enoic acid, increases to about 50% of the total after 4-10 days. Related results for sediments recovered from treatment ponds and river sediments, including core samples (Wilkins et al. 1996; Judd et al. 1996) support the view that, at least for the biological regimes active in the New Zealand environment, the conversion of abiet-13-enoic acid to abietan-18-oic acid (Ali-Kanber et al. 2006) is promoted by the anaerobic conditions (Tavendale et al. 1997), such as those encountered in pond sediments. Apparently the conditions (aerobic) in our experiments were not conducive to the formation of abietan-18-oic acid. SEM evidence suggests

**Table 4** Levels of BOD<sub>5</sub> (mg/L) in freshly collected and sequentially filtered Pond 4 water sample collected 1/11/99

|              | $BOD_5$ | %   |
|--------------|---------|-----|
| UF Pond 4    | 28.6    | 100 |
| GFF Pond 4   | 15.5    | 54  |
| 3 μm         | 15.5    | 54  |
| 0.8 µm       | 14.3    | 50  |
| $0.45~\mu m$ | 11.0    | 38  |
|              |         |     |

Abbreviations: UF = unfiltered, GFF = glass fibre filtered



Table 5 Levels of resin acids (µg/L) in freshly collected and sequentially filtered Pond 4 water sample, collected and extracted 1/11/99

|                   | Seco | Pim | 18-<br>Ab | DHAA | 13-<br>ene | Cls | Total | %   |
|-------------------|------|-----|-----------|------|------------|-----|-------|-----|
| UF Pond 4 (a)     | 64   | 74  | 337       | 152  | 203        | 20  | 850   |     |
| UF Pond 4 (b)     | 68   | 77  | 364       | 158  | 211        | 20  | 898   |     |
| Average $(n = 2)$ | 66   | 75  | 350       | 155  | 207        | 20  | 874   | 100 |
| GFF Pond 4 (L/L)  | 40   | 33  | 102       | 72   | 69         | 5   | 322   | 37  |
| 3 μm (L/L)        | 28   | 25  | 65        | 61   | 55         | 0   | 234   | 27  |
| 0.8 µm (L/L)      | 29   | 26  | 63        | 65   | 59         | 0   | 242   | 28  |
| 0.45 μm (L/L)     | 28   | 22  | 55        | 58   | 42         | 0   | 205   | 23  |

Abbreviations: UF = unfiltered, GFF = glass fibre filtered, L/L = liquid/liquid, Seco = secodehydroabietic acids -1 and 2, Pim = pimaric acid, 18-Ab = abietan-18-oic acid, DHAA = dehydroabietic acid, 13-ene = abiet-13-enoic acid, Cls = 12-chloro, 14-chloro and 12,14-di-chlorodehydroabietic acids, total = total resin acids, % = recovery relative to unfiltered water

Table 6 Levels of total, free and particle bound resin acid ( $\mu$ g/L) and BOD<sub>5</sub> in Pond 4 water sample collected 22/6/2000 and monitored over 17 days of aerobic treatment

| Time (days)      | Seco | Pim | 18-Ab | DHAA | 13-ene | Cls | Total | %   | $BOD_5$ |
|------------------|------|-----|-------|------|--------|-----|-------|-----|---------|
| Unfiltered water |      |     |       |      |        |     |       |     |         |
| day 0 (8 h)      | 241  | 297 | 480   | 354  | 983    | 5.8 | 2360  | 100 | 38.3    |
| day 2            | 211  | 251 | 509   | 363  | 639    | 6.4 | 1980  | 84  | 32.6    |
| day 3            | 132  | 155 | 307   | 314  | 557    | 5.2 | 1471  | 62  | 22.8    |
| day 4            | 103  | 131 | 254   | 279  | 488    | 7.2 | 1262  | 53  | 15.1    |
| day 7            | 23   | 64  | 98    | 127  | 199    | 0.5 | 511   | 22  | 9.1     |
| day 13           | 12   | 41  | 59    | 79   | 134    | 0.7 | 326   | 14  | 8.1     |
| day 17           | 14   | 45  | 58    | 66   | 87     | 0.3 | 271   | 11  | nd      |
| L/L 0.45 µm      |      |     |       |      |        |     |       |     |         |
| day 1            | 115  | 70  | 106   | 146  | 363    | 5.9 | 806   | 34  |         |
| day 3            | 87   | 61  | 97    | 158  | 138    | 5.7 | 545   | 23  |         |
| day 4            | 69   | 53  | 99    | 158  | 123    | 8.4 | 510   | 21  |         |
| day 7            | 14   | 16  | 20    | 59   | 37     | 1.1 | 147   | 6   |         |
| day 13           | 3.3  | 6.5 | 7.5   | 17   | 16     | 0.8 | 52    | 2   |         |
| day 17           | 1.3  | 3.7 | 4.7   | 7.2  | 9.4    | 0.8 | 27    | 1   |         |
| Sox 0.45 μm      |      |     |       |      |        |     |       |     |         |
| day 1            | 69   | 135 | 436   | 400  | 394    | 0.2 | 1435  | 61  |         |
| day 3            | 60   | 90  | 191   | 182  | 343    | 0.9 | 867   | 37  |         |
| day 4            | 32   | 65  | 141   | 147  | 195    | 0.2 | 580   | 25  |         |
| day 7            | 19   | 57  | 84    | 99   | 179    | 0.1 | 438   | 19  |         |
| day 13           | 9.2  | 36  | 47    | 54   | 116    | 0.0 | 262   | 11  |         |
| day 17           | 8.4  | 25  | 23    | 48   | 54     | 0.0 | 159   | 7   |         |

Abbreviations: L/L = liquid/liquid, Sox = Soxhlet, Seco = secodehydroabietic acids 1 and 2, Pim = pimaric acid, 18-Ab = abietan-18-oic acid, DHAA = dehydroabietic acid, 13-ene = abiet-13-enoic acid, Cls = 12-chloro, 14-chloro and 12,14-dichlorodehydroabietic acids, total = total resin acids, % = % remaining relative to UF water, measured on day 0, nd = not determined

that fibrous particulate material present in clarified effluent facilitates the aggregation and subsequent settling of biomass flocs. It is likely that the resulting pond sludges containing bound resin acid, particularly abiet-13-enoic acid, provide suitable anaerobic environments for the formation of abietan-18-oic acid.

## References

Ali-Kanber S, Wilkins AL, Langdon AG (2000) Speciation of pulp mill derived resin acids in the Tarawera River, New Zealand. Bull Environ Contam Toxicol 64:622–629

APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association,



- American Water Works Association, Water Pollution Control Federation, Washington, p. 1268
- Hall ER, Liver S (1996) Interactions of resin acids with aerobic and anaerobic biomass. II Partitioning on biosolids. Water Res 30:672–678
- Judd MC, Stuthridge TR, McFarlane PN, Anderson SM, Bergman I (1996) Bleached kraft pulp mill sourced organic chemicals from a New Zealand river. Part II: Tarawera river. Chemesphere 33(11):2209–2220
- Kanber SA, Langdon AG, Wilkins AL (2006) Speciation of particleassociated resin acids and chromophoric compounds in water samples from the biological treatment system of two New Zealand pulp mills. Bull Environ Contam Toxicol 76(3):450–457
- Kostamo A, Holmbom B, Kukkonen JVK (2004) Fate of wood extractives in wastewater treatment plants at kraft pulp and mechanical pulp mills. Water Res 38(4):972–982
- Leppanen H, Kukkonen JVK, Oikari AOJ (2000) Concentration of retene and resin acids in sedimenting particles collected from a bleached kraft mill effluent receiving lake. Water Res 34(5):1604–1610

- McLeay D (1987) Aquatic toxicity of pulp and paper mill effluent: a review. Report EPS 4/PF/1. Environment Canada, 191
- Otto A, Simoneit BRT (2001) Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochim Cosmochim Acta 65(20):3505–3527
- Tavendale MH, McFarlane PN, Mackie KL, Wilkins AL, Langdon AG (1997) The fate of resin acids-2. The fate of resin acids and resin acid derived neutral compounds in anaerobic sediments. Chemosphere 35:2153–2166
- Wilkins AL, Panadam SS (1987) Extractable organic substances from the discharges of a New Zealand pulp and paper mill. Appita 40(3):208–212
- Wilkins AL, Singh-Thandi M, Langdon AG (1996) Pulp mill sourced organic compounds and sodium levels in water sediments from the Tarawera River. Bull Environ Contam Toxicol 57:434–441
- Zender JA, Stuthridge TR, Langdon AG, Wilkins AL, Mackie KL, McFarlane PN (1994) Removal and transformation of resin acids during secondary treatment at a New Zealand bleached kraft pulp and paper mill. Water Sci Technol 29:105–121

